Analysis of Users’ Web Navigation Behavior using GRPA with Variable Length Markov Chains
نویسنده
چکیده
With the never-ending growth of Web services and Web-based information systems, the volumes of click stream and user data collected by Web-based organizations in their daily operations has reached enormous proportions. Analyzing such huge data can help to evaluate the effectiveness of promotional campaigns, optimize the functionality of Web-based applications, and provide more personalized content to visitors. In the previous work, we had proposed a method, Grey Relational Pattern Analysis using Markov chains, which involves to discovering the meaningful patterns and relationships from a large collection of data, often stored in Web and applications server access logs, proxy logs etc. Herein, we propose a novel approach to analyse the navigational behavior of User using GRPA with Variable-Length Markov Chains. A VLMC is a model extension that allows variable length history to be captured. GRPA with VariableLength Markov Chains, which reflects on sequential information in Web usage data effectively and efficiently, and it can be extended to allow integration with a Web user navigation behavior prediction model for better Web Usage mining Applications.
منابع مشابه
Predictive Analytics with Sequence-based Clustering and Markov Chain
This research proposes a predictive modeling framework for Web user behavior with Web usage mining (WUM). The proposed predictive model utilizes sequence-based clustering, in order to group Web users into clusters with similar Web browsing behavior and Markov chains, in order to model Web users’ Web navigation behavior. This research will also provide a performance evaluation framework and sugg...
متن کاملVariable Length Markov Chains for Web Usage Mining
Web usage mining is usually defined as the discipline that concentrates on developing techniques that model and study users’ Web navigation behavior by means of analyzing data obtained from user interactions with Web resources; see (Mobasher, 2006; Liu, 2007) for recent reviews on web usage mining. When users access Web resources they leave a trace behind that is stored in log files, such trace...
متن کاملUsing Markov Chains for Structural Link Prediction in Adaptive Web Sites
My research investigates into using Markov chains to make link prediction and the transition matrix derived from Markov chains to acquire structural knowledge about Web sites. The structural knowledge is acquired in the form of three types of clusters: hierarchical clusters, reference clusters, and grid clusters. The predicted Web pages and acquired Web structures are further integrated to assi...
متن کاملUsing Markov Chains for Link Prediction in Adaptive Web Sites
The large number of Web pages on many Web sites has raised navigational problems. Markov chains have recently been used to model user navigational behavior on the World Wide Web (WWW). In this paper, we propose a method for constructing a Markov model of a Web site based on past visitor behavior. We use the Markov model to make link predictions that assist new users to navigate the Web site. An...
متن کاملComputing the Entropy of User Navigation in the Web
Navigation through the web, colloquially known as “surfing”, is one of the main activities of users during web interaction. When users follow a navigation trail they often tend to get disoriented in terms of the goals of their original query and thus the discovery of typical user trails could be useful in providing navigation assistance. Herein we give a theoretical underpinning of user navigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011